Roll No \qquad

EE/EX-403-CBGS

B.Tech., IV Semester

Examination, June 2020

Choice Based Grading System (CBGS)
 Digital Electronics and Logic Design (DELD)

Time : Three Hours
Maximum Marks : 70
Note: i) Attempt any five questions.
ii) All questions carry equal marks
iii)In case of any doubt or dispute the English version question should be treated as final.

1. a) dinimize the following function using K-map and realize
using logic gates:
$F(A, B, C, D)=\Sigma m(1,5,7,13,15)+d(0,6,12,14)$
K-map
logic
$F(A, B, C, D)=\sum m(1,5,7,13,15)+d(0,6,12,14)$
b) State and prove De-Morgan's theorem. Also prove the following rules of Boolean algebra:
i) $\mathrm{A}+\mathrm{A}^{\prime} \mathrm{B}=\mathrm{A}+\mathrm{B}$
ii) $(\mathrm{A}+\mathrm{B})(\mathrm{A}+\mathrm{C})=\mathrm{A}+\mathrm{BC}$

De-Morgan's theorem
i) $\mathrm{A}^{\prime}+\mathrm{A}^{\prime} \mathrm{B}=\mathrm{A}+\mathrm{B}$
ii) $(\mathrm{A}+\mathrm{B})(\mathrm{A}+\mathrm{C})=\mathrm{A}+\mathrm{BC}$
2. a) Do the following conversions:
i) $(101110.0101)_{2} \rightarrow()_{8}$
ii) $(432 \mathrm{~A})_{16} \rightarrow()_{2}$
iii) $(428.10)_{10} \rightarrow()_{2}$
b) Using K-map convert the following standard POS expression into a minimum POS expression, standard SOP expression and minimum SOP expression.
K-map
POS
POS SOP SOP

$\left(\mathrm{A}^{\prime}+\mathrm{B}+\mathrm{C}+\mathrm{D}\right)\left(\mathrm{A}+\mathrm{B}^{\prime}+\mathrm{C}+\hat{\mathrm{D}}\right)\left(\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}^{\prime}\right)\left(\mathrm{A}+\mathrm{B}+\mathrm{C}^{\prime}+\mathrm{D}^{\prime}\right)$
$\left(\mathrm{A}^{\prime}+\mathrm{B}+\mathrm{C}+\Gamma\right)\left(\mathrm{A}+\mathrm{B}+\mathrm{C}^{\prime}+\mathrm{D}\right)$.
3. a) How you implement full-adder using half-adder?

Exinin the circuit diagram.
b) Implement the following expression using 8 to 1 multiplexer:
$F(A, B, C, D)=\Sigma m(0,3,4,7,8,9,13,14)$
8 to 1
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{m}(0,3,4,7,8,9,13,14)$
4. a) Draw and explain the look ahead carry generator. 7Look ahead carry generatorb) What is race around condition? Explain with the help oftiming diagram. How is it removed in basic flip-flopcircuit?7
Race around condition (Timing diagram)
i ?
5. a) Design sequence generator using J-K Flip-Flop for the following sequence:
$1 \rightarrow 3 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 1$.
sequence 90
sequence generator
$1 \rightarrow 3 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 1$.
b) Explain the difference between asynchronous and synchronous counter. How lockout condition in counter is avoided?
${ }^{\prime} \mid$ logrfout condition
6. a) 臤plain with neat diagram working of serial- in serial-out O4-bit shift register. Draw necessary timing diagram. 7 serial- in serial-out 4-bit shift register
b) Draw and explain :
i) Johnson Counter
ii) BCD Counter
7. a) Draw the basic structure of CPLD. Explain its features in brief.
b) Explain analog to digital conversion using successive approximation.
Successive approximation
8. Write short notes on (any two):
a) PAL
b) Master-slave FF
c) ROM
d) Applications of sequential circuits
A) PAL
~) Master-ss atue FF
g) ROM
X) sluquentia Circuits
$+3$

